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2, Study blast wave behavior from simple pressure vessel bursts.
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‘5, Back calculation studies.
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SURVEY OF THE LITERATURE
This survey is complete. It is being forwarded to NASA Lewis

Laboratories for printing as a NASA CR report and distribution.

SIMPLE.PRESSUREVVESSEL BURST
This study is reasonably complete. ’It was discovered during the

analysis of 10 numericalvcalculations with different initial conditions
that a single Y¥erpressure versus'scaled distance némograph for all
spherical pressure vessel bursts could be constructed from the computer
output. The initial point on the nomograph can be determined easily if
the pressure, vélocity of sound and heat capacity ratio of the gas in
the vessel are known. These are the pertiﬁent'variables according to
Baker's analysis as presented in the last étatus report. At present we
are not sure how positive impulse will scale and‘we do not have sufficient
data reduced to allow a clean cut decision to be made on this point. We
should complete both the overpressure and positive impulse modeling
during the néxt 6 months. The results of this work have yielded a thesis
for Mr. Ricker and.are being written up for presentation at the Fifth
VInternational Symposium on Exploéions and Reactive Systems to be held in
. Bourges, France, in September. . |

SwRI is planning to start experimenting with bursting glass spheres
to learn how the blast wave in the near field is modified by the presence

of fragments.

ENERGY OF ADDITION STUDIES
We have approximately 23 computer runs in which‘energy was added

slowly to a ceatral region of the flow. The basic grid contains nine cases.



The central point on the grid is a control point and calculations were
also made for an increase and decrease by an order of magnitude in both
the energy and‘the rate of energy addition, yielding 8 additional basic
calculations., The energy addition was exponential in time with a time
for additioniof 0.2 t af thetcéntral point where tois the time it takes
a sound signal to travel from the edge of the ball to the center. The
energy was added homogeneously to the gas iﬁside the ball’volume. The
other runs were made to check on the effects of varying a number of im-
portant parametefs. bIn each case only oné parameter was’varied at a time.
For example, net size Waé changed to check reproducibility, energy was
added és a cosine’function in/time, as a cosine function in”space, as a
double ramp function, etc., etc. |

The results of these rums are currently being amnalyzed in detail.
They will yield a Ph.D. thesis for Mr. Adamczyk and will thereafter be

written up for the open literature.

ENERGY DISTRIBUTION AT LATE TIME

A paper is in preparation in which we examine the energy distribu-
tion, at late time, between the source voluﬁe and the surroundings. This
is calculated by estimating the p,v behavior of the contact surface during
the explosion process to determine the quantity of emergy which is eventu-
ally deposited in the su;roundings. Six distinct energy addition pro-
cesses have been studied. These are: 1I. Constant pressure energy ad-
dition. II. Constant volume energy addition followed by isentropic
expansion against an always equal counterpressure. IIT, Thevbursting
sphere, IV, Constant velocity piston with finite stroke. V. Constant

velocity flame with finite flame ball size, and VI. Spherical CJ detonation.



It was found that the quantity ES/Q, which represents the relative
quantity of energy transfered to the surroundings varied from (fl-l)/v1
; to 1 depending on the process invoived (here Y, is the heat capacity ratio
of the working fluid in the ball) and that fof the‘(yl--l)/y1 limit no
blast is transmitted to the surroundings while for the 1 limit, point source
behavior is obtained. |

These results lead us to question the concept of far field equiva-
lency as applied t& all explosion5. In regard to this work we have also
discovered a simple way to replace the AHc'of a hydrocarbon by a more use-
ful variable to represent energy addition dué to combustion, whether it be
detonation, flame propagation or constant volume or'constant pressure com-
bustion. It turns out that the actual Hugoniot of the combustién producfs
can be easily curve fitted to the rectangular hyperbdla which represents
heat addition to a constant gamma gas. This curve fit‘yields a value of

Q and Y which can now be used in conjunction with the ES/Q results de-

veloped in the earlier part of‘this_phase of the work. This work is being

written up as a paper for submission to Combustion and Flame.

BACK CALCULATION TECHNIQUE

.This,technique has been developed and compared to a forward calcu-
lation for one case with reasonably good agreement. A detailed descrip—
tion of the technique, written by Dr. Frank Dodge, is included as Appendix
A. The technique will next be applied to some real records which have been
obtained from Mrs.'Hyla Napadensky at IIT Research Institute, Chicago, Ill.
We now feaiizg that the technique will only caléulate ES’ the energy im-

parted to the surroﬁndings by the explosion. However, this technique in

conjunction with the ES/Q_theory discussed in the previous section should



yield a reasonable estimation of Q for any accidental explosion that

can be evaluated by back calculation.
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APPENDIX A

DETERMINATION OF ENERGY-RELEASE FUNCTION

by Dr. Frank Dodge

Southwest Research Institute

1. Introduction

‘There is not yet a general theoretical model that makes it pos-
sible.to unify all the diverse data available from non~ideal explosiomns,
partly because of the gréat difficulty in measuring the energy released
by the explosive reaction. 1In mcét experiments only the'blast wave
characteristics are or can be measured, which makes it necessafy to de-
termine the energy.released by some other method. Strehlow, Savage, and
Vance (Ref. 1) have.dutlined a method of back—calculating the explosive
energy released that uses only experimental pressure data, which if veri-
fied might provide_the needed link between experiﬁental data and the
development of a general theoretical model. The objective of this task
was, in fact, to devise a computer code along the lines sketched in Ref, 1
and to detetmiﬁe if the proppsed method of computing the energy released
was valid. Theré were some questions about whether the assumptions made
in Ref. 1 that conneéted the flow field to the energy released by the ex-
plosion were not overly ideaiizéd, but because of the overall progress
- made in the wvarious tasks of’this prdgrém, more realistic assumptions are
now possible. In addition, the procedure.outlined in Ref. 1 was limited
to experimental data that contained no shock waves; a tentative method of
incorporating shocks is outlined herein, although these kinds of calcula~-
tions have not been included in the present results.

In brief, the method outlined in Ref. 1 uses pressure vs. time



data at a fixed spatial iocation aékstarting conditions for a technique
based on the method of characteristics. The entire flow field is calcu-
lated backward in time and space until the tloud of explosive gases is
reached. Inferences$ are made about the energy contained in the cloud,
using some thermodynamicé— and‘chemistryhbased assumptions. The par-
titioning of this energy between the flow field and the explosive gases
are obtained by using the computed‘details of the flow fieid. This pré—
cedure therefore.allows the energilreleased by the explosion to:bé cor—
related with the éver—pressurés that are generated (i.e., destructive-

ness), the far-field equivalence to INT, etc.

2. Starting Conditions for Calculations

A typical experimental set-up 1is sketched in Figure 1. The pres-
sure gage located aF the radial distance RG froﬁ the site of the explosion
records the pressure as a function of time. This record, the distance RG’
and the time t = 0 at which the explosion begins are presumably all the
data available. |

In order to start the back-calculations of the flow field, two of

the flow variables must be known for all time t > 0 at R =R (This im~

G.
plies, incidentally, that arbitrary assumptions about the pressure and,

say the particle velocity at T = R, are not possible,.and that the relation

G
between the pressure and the velocity must be a solution of the equations
of motion.) The experimental pressure data provide one of the ﬁeeded in-
puts, but the second must itself either bé measured (Which,'if‘it is the

particie velocity is not easily done and in any case not generally avail-

able) or derived solely from the pressure record, which is the method used -

here. Since the explosion is unconfined, the flow contains only a simple



wave emanating from a simple source. With this kind of wave system, there
is a unique relation between the pressure vs. time curve at R = RG and the
particle vs. time curve,'asfcontrasted to a wave system including re-
flected waves for which the partiqle velocity can not be computed solely
from é pfessure record. |

When the maximum pressure is not tob much larger than ambient, the
velocity can be calculated by acoustic méthodé (Refs. 2 and 3). For a-
coustic waves, the particle veiocity uatR = BG is: |

a2

' t
K -° .
u(RG,t) RG L) s*dt + a_s . (1)

In Eq. (1), a ié the ambient speed of sound and 8 = (p - po)/p_0 is the
"condensation," where p is the density of the air in,fhe wave system and
o, is the ambient'density. ‘Forian ideal gas, the condensation can be re-
lated. to the pressure p by:
s=(*E-)Y—l=.AP—_(AP=p-p)‘ (2)
Py ‘ Ypo 0 :

where the last approximation follows from the assumed smallness of the
over-pressure. Eqs. (1) and (2) allow-thé veloéity at R = RG to be cal~-
culated solely from a pressure record, for acoustic waves.

Ref. (1) gives a modification of Eq. (1) to allow larger over-pres-
sures, using a first order correction term to the velocity of sound, a.

For an ideal gas a? = yp/p, so to the first approximation:

a = a [l +50-Ds] - (3

The particle velocity is therefore:
ao‘ t ‘ : ) 1 o .
'u@cﬁ)m E—[H@pms]f sedt + a _[1 + =(y-1)sls (&)
G ) o o - 2



A further refinement can be made by applying acoustic theory

locally, i.e., by superimposing an acoustic "wavelet" on a wave of finite

amplitude (Ref. 4.). This approximation gives.

u(R t)n—*Q"J—l-—P—Y In 2« dr + —2|- 2| %Y _ 1 ()
6 RG (o} Y po ’ 'po y-1 po

In any of the methods, the integration with respect to time must be per-
formed numerically. |

.As mentioned previously, the pressure and velocity at R = RG must
be a solution of the equations of motion. The accuracy of the'various ap-
proximations, Eqs. (1), (4), or (5), can only be checked, therefore, by
experimental data for ﬁoth pressure and velocity or by numerical results
from available computer codeé for simplified forms of nqn—ideal-explosiqns.
Since experimental data are not curreﬁtly'available, numerical data were
used here. These solutions, which were provided by A. A. Adamczyk, were
computed_for the very rapid addition of heat to a spherical cloud of ideal
gas (Reff 5). A typical pressuré pulse in the surroundings at a distance
RG equal to three times the initial cloud'radius;Ro,'is shown‘in‘Figure 2.
This pulse is characterized by a strong compréssion wave that passes the
pressure gage 1océtion at a noh-dimenéional[ time of about 2.9 (which cor—
responds to an actual time of 2.9 x Vi.4 = 3.4 times the time required for
a sound wave to travel outward from the center of the cloud to its original
boundary, when the gas is at its initial temperature). The velocity in-
duced by‘this system of out-going waves is shown in Figure‘3, as are sample
results calculated by insefting the pressure data of Figure 2 into Egs. (1),
(4), and (5). All of the approximations reproduce the general shape of the

velocity vs. time record, but the wavelet‘approximation, Eq. (5), has the



10

smallest maximum error. (Thé error at a given time is the discrepancy
in velocity divided by the méximum velocity, u = 0.31260). The wavelet
method is therefore used hereafter to calculate starting velocities.

‘The Wavelet abproximation probably is accurate.enough to calculate
reasonable starting velocities even for much stronger,compressions waves,

as is discussed in Section 5.

3. Back-Calculations by Method of Characteristics

The method of characteristics (that is, projecting characteristics
from points where ﬁhe flow vériables are known to poiﬁts where the flow
variables are desired) is a comﬁon solution technique for one—dimensional,
unsteady, compressible flow (Ref, 6). 1In iﬁs pure form, however, it is
" extremely unwieldy for use in computer solﬁtions, and the Hartree or
"constaﬁt time'stép"vmodification is the most common method of applica-
tioﬁ for computing the flow that result f?om any>s§ecified disturbance
(Ref. 7). Figure 4a shows how the Hartree scheme would be applied to a
system.of simple, outgoing waves, which will be discussed briefly to con-
trast it With.the scheme developed here. The disturbance can be specified
aiong any line in thé distance vs. time space that is not a characteris-
fic of the flow. Two of the flow variables muét be specified along an
initial data line t = constant, but there is no interrelationship between
the pressure and the velocity along this line that must be satisfied.

The flow variables for‘a time advanced everywhere by At are galculatéd
from the known disturbance and the flow information carried forward with
the characteristics. A point on the advanced time line (say, point 4) is
located apprbximately by prOjecting forward the’particle path (i.e., a

line with the slope dR/dt = l/uz) from a point 2 on the intial data line.
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The "P" and "Q" characteristics (lines with slope 1/(u‘+ a) and 1/(u-a)
respectively) are then dropped back until'théy intersect the initial data
line, simultaneously interpolating between 1 and 2, and‘2 and 3, to de-
termine the required flow variables for thesé characteristicé. The flow
information cérried forward along the characteristics to 4 is used to
calculate.the flow variableé at 4, after which all the slopes are cor—

" rected and iterative cal¢ulations are.performed'until convergence is
satisfied. The conditioné’for numerical stabilitybhave been shown to be
that At < R/a over the entire initial data line. Otherwise the flow
variables at 4 are influenced by data iying 6utside the chéracteristics

‘through 1 and 3. |

It is clear that the Hartree method iS‘ndt applicable to the prob-
lem of back-calculating the fiow generated by a system of outgoing Waveé.
For this, thedpressure and velocity at a fixed location R = RG for all
t > 0, as well as the pressure (p = po) and velocity (u = 0) along the line
t = 0 lying to the right of the source of the waves (i.e., the cloud of
gases), are the known conditions, and the disturbance that caused the flow
is sought. A new "constant distance step" technique has therefore been
dévised, as sketched in Figure 4b. Although at firstkglance the constant
time step and the constant distance step procedures seem analogous, there
are several important differences. The particle path through the new

point (say, point.h) will not lie without thelafea formed by the character—
istics intersecting at 4, except for a supersonic flow, and since the point
of originiation oftﬁhis ﬁarticle path wi}l not be known even approximately
in advance of calculating the flow variables at 4, there is no need to
project the particle paths for this method. Instead the "Q" characteristic

through one of the points_on the initial data line (say, point 1) is
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projected backward to locate 4 approximately. 'From 4, a "P" character~
istic is projected forward to locate a point 3 on the initial data line,
using interpolation between 1 and 2 to determine the slope of the charac=-
teristic. Iterating on the location of 4 and 3, usiﬁg corrected values

of the average slopes, velocities, ete., is repeated until the solution
convergences. The flow properties of point 4 can be calculated, and so on.
Details are given in the Subappendix.

The stability criterion reiating AR to the chosen values of At can
be explained with reference to figure SaAand 5b. Ihe distance step AR
must'ce chosen small enough so that each of the new points lies inside the
zone of influence of the two appropriate points on the initial data line.
Otherwise, as the dashed lines indicate, the flow variables at the new point
will be influenced by data not on the initial data‘line. Fof either sub-

sonic or supersonic flow, it turns out that:
1 ! u? l ‘ o :
& - * - — .
AR <5 a-* bt |1-75 (6)

When the flow is locally sonic (u = a) it appears that AR.= 0; that
is, the calculations canmnot progress. This corresponds to the coincidence
of a characteristic and the data line, which if it occurs at other than
isolated or singular points, causes the method of characteristics to break
down; in other words, thefproblem is not well-posed (Refs. 8 and 9). It
is unlikely in a system of oﬁtgoing waves generated by an explosion that the
velocity will be sonic except at isolaced instants of time along anj line
R = constant; therefore, the method of characteristics ought to be appli-
cable here. (For the Hartree constant time step method, a characteristic

and a data line can never coincide.) Figure 5¢c shows a case where the

velocity increases from subsonic through sonic (at a discrete time) and
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on into the supeisoﬁic range. ,AS can be seen, the ﬁay the "P" and "qQ"
charactexis;ics are projectéd backward to locéte a new point changes from
one side of the sonic pbint to'the other, with the result that the entire
new data line can be "filied in" completely without using the "Q" or
vertical, characéeristic through the sonic point. That is, there are no
regions on the new line for which the flow &ariableé can not be calcu—
lated, for any At > 0 onrthe initial line; each of the points on the'new
data line has "P" and "Q" characteristics which when projected forward lie
Witﬁin the data between the appropriate points on the initial line; and
"all the data points on the initiallineafe used in calculating the new data.
This seems to indicate that the constant AR method is applicable even when
the flow is sonic, if the soﬁic vélocity occurs only at discrete points;

if two édjacent points have u = a (corresponding to sonic flow for a finite
time), however, the entire method of characteristics is not'applicable.
During the current effort, only cases'involving subsonic flow have been in-
vestigated, so numerical difficulties.that might be encountered with sonic
flow at discrete points have nbt been evaluated in practice.

A computer program has been wriften to.implement‘the constant dis-
tancevstep procedure. Typical results for overpressure and particle ve-
locity, compared to their "exact" values are shown in Figure 6. The start-
ing conditions for these calculations ﬁere shown previously in Figure 2 and
3. (Only part of the calculated data is shown for clarify.) The back cal-
culations compare reasonably well with the exact results. The major dif-
ference between thé.two‘is that the back-calculation method has tended to
' smooth the abrupt changes in the slope of the exact curves, There are
several reasons for this. A value of At was used for the starting condi~-

tions that was just small enough to resolve the changes in slope in the
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data fqr R = Rg’ and this relatively large At created a fairly coarse
computing mesh, thus tending to smodth the calculatioms. Also, the
-"exact" starting data are the results of numerical calculations and thus
are not an exéct solution of the equations of motiqn. In particular, the
conservation of mass requirement in the originél starting data (using the
known "exact" veiocity and not Eq. (5) was checked by finite difference
calculations and found to contain a discrepancy of the order of 0.1%.
This discrepancy propagates back.through the calculations in the constant
aistance step method, and whilelthe error does not increase without bound,
this is another source of smoothing in the results. Taking these facts
into account, the comparisoﬁ displayed in Figure 6 is a satisfactory

verification of the method and of the computer code.

4. FEnergy~Release Computations

The energy added to the surroundings by the explosion can be eval-
uated after the flow wvariables (pfeséure, temperature, velocity, etc.)
héve been calculated. There are several ways to make this evaluation.

With reference to Figure 7, the initial size of the effective cloud
of explosive gases, at the instant the release of energy begins, is ob-
tained by projecting the "P" characteristic backward from the point on the
initial data line R = RG.for which the pressure first rises above ambient,
until it'intersects the line t = 0. If there are no shock waves, the
slope of this characteristic is constant and equal to l/ao, so Ro = RG—aoto.
(If a shock wave overtakes the initial wave, the slépé of the characteristic
changes, and this must be aécounted for, as will be discussed in Section 5.)

The particle path originating at R = RO, t = 0, is traced out by using the

already computed particle velocities; this path is the contact surface
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separating the surroundings from the ekplosive cloud. The final size of
the cloud, R = Rf', is calculated by projecting the "P" characteristic
backward from the initial data line, at the instant the velocity eduals
zero and the pressure remains at ambient.

The energy added to the surroundings ié equal to the kinetic energy

that has flowed outward from the sphere R = RG plus the internal energy

stored in the sphefiéal shell R, SRZIR,at t =t.. (There is no kinetic

G £
energy left in the shell Rg fSREZ R, after the wave system passes RG.)
Thus '
te - R
E_ = 4TR, pV? ¢ dt + 4nCy|  p(T-T IR*dR )
to » £

where Cv'is the specific heat at constant volume. Alternatively, the
energy added to the surroundings can be evaluated by considering the work
done on it by the expanding cloud. Thus

Re

E_ = 47 pR% + dR ; (8)
] ,
where p is the pressure of the surroundings at the contact surface.
(Equation (8) may be the most convenient to use>for numerical calculations.
This part of tﬁe computer program has not yet been completed, so the rela~-
tive.advantages of Eqs. (7) and (8) have not been tested.)
The eﬁergy transferred to the surroundings can be coupled to the

total energy deposited in the cloud by the use of results derived by

Strehlow and Adamezyk (Ref. 10).

5. Recommendations for Further Work

There are several sub-tasks that need to be completed in order to
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vﬁake the computer code of maximum benefit. Clearly, the verification of
the ene:gy-release coﬁputations should be completed, as outlined in
Section 4, by comparing the numerical predictions to both actual experi-
ments where the explosive ene;gy is known (e.g., bursting spheres) and to
numerical solutions fdr cases of adding heat rapidly to a finite wvolume
of gas (e.g., the examples discussed in Section 2).

It was pointed out in Section 3 that errors in the starting con-~
ditions, in the sense that the pressure and particle-velocity used to be-
gin the back éalculations are not solutions of the equations of motiom,
are propagated throughout the flow field. This will be especially trouble—
some when éctual experimental pressure records are the input. One way to
diminish the possible errors is to make sure that the input satisfies con~
servation of mass. Starting with tentative data computed from Eq. (35),
this can'bg done by determining thevvelocities and densities on:the data
line R = RG - AR. and then using the velocities and densities for R = RG
and R = RG - AR to check conservation of mass by a finite difference
technique. The veloéities albng the initial data 1ine would be altered in
an iterative manner, re*computing>the velocitiés and densities along
R = RG -~ AR each time, until conservation of mass is satisfied. Figure 8
indicates one way to do this. Forward differenceé in time and backward
differences in space are used. The density everywhere along the initial
data line is known since\p = DO(P/PO)l/Y (unless shock waves are present).
Therefore, only‘the computed velocities for R = RG can be in error. In
Figure 8, the veloéity u; and density p; are interpolated from the com~
puted pdints along the new data liﬁe. The velocity on R = Ré is changed

to make the finite difference form of the conservajion mass equation

identicallyvequal to zero. (Changing u, will also eventually change u;
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and p; but to a much smaller degree.) In this way, the velocities

along R = R_ can be altered one at a time to satisfy comservation of

G

mass. Then, the velocities and densities along the new data line can
Be re—compﬁ?ed, and the process repeated until the calculations con-
verge. Although this process is not without errors, because the kind of
finite—difference grid used is known to be 1éss accurate than centered
differences, it should gfeatlybimprove ghe accuracy ‘of the computed

~ starting velocities%

Another desiréble modification to the computer code is the capa-
bility to include shock waves. Significant numerical difficulties can
ariée whenvthere is a shock in the flow field, and, in fact, the method
of characteristics alone can not be used to back-calculate the entire
flow field. The shock creates a "“shadow," as illustrated in Figure 9,
through which the characteristics (in this case, the "P" characté;istics)
cannot be followed. . Nonetheless, the method of characteristics combined
with a finite difference technique can be used to comﬁute the flow varia-
bles in the shadowed zone, and thereby geﬁerate the information needed to
predict the tharacteristics. (The method of . characteristics alone is suf-
ficient elsewhere’in the flow field.)

Assuming that the velocity can be computed along the initial line
RG’ the'finité difference form of the conservation of maés equation (sim-
ilar to Figure 8) can be ﬁsed'as an extra polation techniqﬁe to give omne
equatioﬁ relating p and u’at, say, point C in Figure 9. The known value
of the "Q" Riemann“variable at point C gives a second independent rela—
tion betweén p and u. Therefore, p and u at C can be &etérmined, and the
corresponding "P" variable generated., A similar technique can be used to

find the variable at C on the back side of the shock, and likewise points



18

elsewhere along the shock can be computed for each distance step. Since
the flow variables can change rapidly in the vicinity of a shock, the
finite difference gridwork.needs to be relatively fine. Note that the
finite difference method is not used to cross a shock; instead, the Ran~
kine-~Hugoniot relations are used to relate the flow wvariables on either
side of the shock (Ref. 11).

The starting veloéities cannot be determihed directly from Eq. (5)
when the pressure record contains a shock. For weak shocks (i.e., pressure
ratios across the shock of 2.5 or less) the floﬁ field can still be con-
sidered approximately isentropic (Ref. 6) so Eq. (5).can‘be used if the
velocity jump across the shock Au is computed separately by the Rankine-
Hugoniot equations (Ref. 11); this is possiblé because the conditions on
the upstream side of the shock are known. In the nomenclature of Figure 9,

then, the starting velocities for weak shock waves are

a? t y-1 7 2a | J:ik

u(R ,t)a._.g.. Pl Y 1n*P—'dt+~—-—9- B —l,tSt (9)
G TRg B Po o Y-l jip, | A
d ,
3:11 ‘ a® t -1 2a -1
0 2y P ol|p| 2y '
. = <4 . —_— -
u(Rg,t) AUA YRG > 1n > dt + v ) D 1),t > 1:A (10
t
. A

In Eq. (16), AUA is computed from the Rankine~Hugoniot equations, using

PA and'UAbas computed from Eq. (9) for t = t,s as the upstream conditions.
For strong ghocks, the starting condiéions become more difficult to

determine because each fluid particle passing through the shock has a change

‘of entropy. If. the shock is of constant strength, or nearly so, however,

"Eqs. (9) and (10) still apply because the change in entropy is a constant
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for each particle. fThe flow field on either side of the shock is isen~
tropic, and all the entropy change is taken up in AUA. When the shock
strength'varies, as it would in most éxplosion—generatéd flow fields, the
particles experiencé different entropy changes, and Eq. (10), which is
derived for an isentropic flow, becomes increasingly more inaccurate.
There is not an unimpeachable way, in fact, of determining the starting
velocitiés for t > tA except by considering the known pressure distri-

bution along R = RG as an initial distubance to the volume of space
R > RG’ and then using the Hartree constant time method or equivalent to

computé the flow field for R = R This procedure would give the velo-

c*
cities along R = RG’ but it seems unduly complicated, at least until the
. computed code for non-strong shocks has been verified. It is therefore

recommended that Eg¢s. (9) and (10) be used initially even for étrong shocks.

6. Conclusions

A verified computer code, based on.the method of characteristics,
has been deveiopedbwhich uses as its only input the pressure pulse recorded
by a gauge at some distance from a non-ideal explosion to compute the entire
transient flow field (behind the' gauge location) generated by the explosiom.
A method has been indicated to use these calculations to determine the ener-
gy‘released’by the explosion. The energy-release formulation must be in-
cluded in the code and verified. The indicated method for incorporating
shocks should also be implemented.

It ié believed’that the insight provided by the results of this code,
particularly the energy~relea§e computations, will significantly aid the

developmentfof a general theoretical model of non—-ideal explosionms.

'
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SUBAPPENDIX. Calculation of Flow Variables on New Data Line

The method will be 6utlined for a general point. Only the sub-
sonic flow is discussed, but the same procedure.holds for supersonic
flow. |

As a first guess, the position of point & (Figﬁre A~1) on the new
line is estimated.by projecting thé "Q" characteristic backward from
point 1 as a straight liﬁe: |

1
4 1 u,~a,

AR ' (A-1)

The first guess of ,the position of the.point 3, whose "P" characteristic
crosses point.4 is estimated by projecting the "P" characteristic'backr

ward from point 3, using linear interpolation between 1 and 4 to deter-

mine simultaneously the properties at 3:

u +a

N T 22 _ - 2
t, =t + ||[U,+a +AR vl /(t,=t,)]% + 460R(u;~a ) x

1/2

u,+a u,+a | .
2" %y ; 1%
X [ -1](1 - }/(tz“t1) o= [u +a;+

\u4;78, u;=a,

u_+a u, +a

.
1 % U;—-a,

u‘_az ;.1)(t2-t1)] / 2(u1-a1){ 2 - 1}/(t2—t1) (A,z)

The first guess for the properties at 3 are thus

- } (u-u) (a-3)

(-t ' ' ,
a, =a, + ( - 1}§a2-a1) _ (A-4)



21

. . - -~ ___2 ) , e ———-——2 --
The Rleman§ variables P (Y'l)a + u and Q {Y—l] a u

at the new point 4 are:

. ,
P =P, + - (t,-t,) (a-5)
4 3 R—%AR 3 b
2u1a1
Q, =Qq, + T (t,~ty) (A-6)
‘ R“"z‘AR :

Finally, the first guess for the velocity and speed of sound atké is:

P,-Q, | C®4,) (D

v, = ) a, = 3 . (A~7)

Now, an iteration process is begun to determine point 4 accurately,
since the "P" and "Q" characteristics do not in fact have a constant slope.
The average slope of the "Q" characteristic between 1 and & is

tan[(61+64Q)/2] for example. Thus, the ne#t guess for point 4 is:

£, = t, + R tan[(8,+0,0/2] (Ars)

where 6, = arctan[l/(al—ul)], 6, = arctan[l/(a“-uh)], and either non-
dimensional variables are used or it is understood that the tangents have
dimensions of reciprocal velocity. The flow properties used in evaluating

QMQ are those corresponding to the previous iteration. Likewise,
ty = t, + AR tan[(6, + 8,,/2] - (a~9)

where t, comes from Eq. (A-8), 6, = arctan[l/(as+u3)], G“P = grctan
[l/(a“+uu)],'and the flow properties used in evaluating 6, and eup cor~
respond to the previous iteration. The new values of the flow properties

at point 3 are computed from Eqs. (A-3) and (Aéé). The flow variables at -



22
point 4 are computed by:

. ) (u,a_+u a ) .
B =P +'“fi“ii‘i‘i“ (t~t) SRR (A-10)
SO T ' (RFEAR) :

‘ (u a,tu a ) o
‘Qk é.Qz ¥ ———~—~—*———~ (t ~t ) j R (A-11)
¥ ( R-'EAR) ‘ R »

‘,Equatlons (Ar?) are used to calculate the new u, and a . It has been
»found that convergence is accelerated by iterating upon Eqs. (Ar7),
© (A~10) and (A-ll) until u, and a, do not change.

. New values of t“rand t, are next calculated? and so.bn;‘antil
the loeatieﬁsvof poiﬁts.4 an&v3‘have been determined>accurately.'

_The,initial data point t, on the new line (i.e., the point ﬁhere

u o= b'and tAé pressnte»jgat starts’to iﬁcrease)'is found from the
eQuationy:;v | | | £ |

‘. <t°>#ew (x )old BRja, - o | (a-12)

After the new.line:isfilled in, the data is.3pread eﬁenly by

: intefpolation‘to giﬁe a constant AR between the poinfs{ Otherwise, it
is found that a smaller than average At grows continually smaller with
_the result that the allowable AR becomes smallet as the calculations

progress.‘ﬂ



10.

23
REFERENCES

Strehlow, R. A,, Savage, L. D., and Vance, Gary M., "On the
Measurement of Energy Release Rates in Vapor Cloud Explosions,"
Combustion Science and Technology, 6, pp 307-312, 1973.

Lamb, H., Hydrodynamics, pp 489~495,'Dover Publications, 1956.

Rayleigh, J. W. S., The Theory of Sound, Vol. II, pp 16, 109-114,
Dover Publlcatlons, 1958.

Liepmann, H. W., and Roshko, A., Elements of Gasdynamlcs, pp 74-76,
John Wiley and Sons, 1957..

Strehléw, R. A., and Adamczyk, A. A., "On the Nature of Non-Ideal
Blast Waves," Tech. Rept. AAE 74-2, Grant AFOSR-73-2524,
University of Illinois, April 1974. ’

Rudinger, G., Wave Diagrams for Nonsteady Flow in Ducts,
D. van Nostrand, 1955.

Chou, P. C., Karpp, R. R., and Huany, S. L., "Numerical Calculation
" of Blast Waves by the Method of Characterlstics," AIAA J., 5,
pp 618-723, 1967. : '

Courant, R., and Ffiedrichs, K. 0., Sﬁpersonié Flow and Shock Waves,
Chapter II, Interscience, 1948.

Shapiro, A. H., The Dynamics and Thermodynamics of Comptessible
Fluid Flow, Vol. I, Appendix A, Ronald Press, 1953.

~Strehlow, R. A., and Adamczyk, A. A;; Terminal\Energy Distribution

for Non-Ideal Blast Waves. To be submitted to Combustion and
Flame., ) :




\ \ )
\ ! .
. - SPHERICAL NON-i

\

7 PRESSURE .
S eace

| DEAL
EXPLOSION AJ

Figure 1. Model for Analysis of Non’-!deal Explosive Flow Field |

i o (o]

PRESSURE vs TIW
RECORD



PRESSURE RATIO, AP/F,

0.5 I T I —] ‘ T T

Rg=3Ry

0.4+ : 2 ' _
% =R»To
y =1.4

0.3

0.2

0.1

l L —1 o L Lo
1.8 2.2 2.6 3.0 3.4 3.8 4.2
NON-DIMENSIONAL TIME AFTER START OF HEAT ADDITION, t/R,&,

‘Figure 2. Pressure" vs Time at -RG = 3R for Sample Problem



| NON~DIMENSIONAL VELOCITY, u/6,

0.5 1 I l | I l
o LINEAR ACOUSTIC, EQ. (1 )"

| o NON-LINEAR ACOUSTlC F.Q

0.4 & WAVELET, EQ.( i
Note: Where only © is shown, o 2 -

‘all theories are equivalent. ~ . o - = 65 =RTy.
Y A N =1,
| y =1.4

0.3 al\,. - -

- - '8
A
%.

0.2 Max. Error, Eq. (1) = 8.8% \ -
Max. Error, Eq. (4)=12.8% | §g o
Max. Error, Eq. (5)= 3.5% | . . JEXACT

| T y © -\ sowrtioN"
_ | P o
o /O, = S , \ o
0 "9"0/: ' e} . e 6\\: :
' @\%

S L S— ' L] | |

1.8 22 26; - 3.0 3.4 3.8 4.2

- NON- D!MENSIONAL TIN\E AFTER START OF HEAT ADDITION, t/R, @

~ Figure 3. Comparlson of Particle Velomtles at RG =.3Rofor Sample Problem



LINE ALONG WHICH DISTURBANCE
V IS SPECIFIED |
i '
@% | HARTREE CONSTANT TIME-STEP
s | - At<Arla o
= 7/ TIME LINE ALONG WHICH FLOW
~| ¢ 'P" CHARACTERISTIC ~  VARIABLES ARE TO BE CALCULATED
3 ' - 1
1Q CHARACTERISTiC -
I\ 4 |
e ﬁ’:’e\// PIAN INITIAL DA;\(
7 Rl ‘\ y f At AR.@i g
ﬁj é k“'3 L (E) A .
12y 3 DISTANCE, R
SPARTICLE PATH |

“(a) Calculations carriedf forward in time -
/&NHEAL DATA

! CONSTANT R-LINE ALONG WHlCH\j " LINE
~ FLOW VARIABLES ARE TO BE O ARTICLE PATH
CALCULATED - o ] PARTI
‘ . nPu o : : : THROUG% 4
- ~ CHARACTERISTIC— 2 |
.*, \\V¢’33 HQH
’m ‘ 4G4t | CHARACTERISTIC
= CONSTANT DISTANCE STEP Q1
‘ ' ' | K a—AR—s -
AR <l aat|1-u?a?| 8
DISTANCE, R~ R=Rg -

, (_b) Calculahons camed backward in space

Figure 4. Method of Characterisﬁcs Models



1 . ——INITIAL DATA
o LINE -

b—y . L INITIAL
S . DATA
AR=1/2_aA-t'l1-u2/a;2! 1 ' LINE

~(a) Subsonic flow -

" (b) Supersonic flow
/ |_—INITIAL DATA LINE

@ = "P" CHARATERISTIC, - IS oSO
SLOPE i outa g

@ = "Q" CHARACTERISTIC, K
sope-R._1_ |
- odt o u-a

@/
52 SONIC POINT.

> SUBSONIC

- .(c) Mixed flow

Fi'gure’ 5. Stability Criteria for Constant AP



NON-D IMENSTONAL VELOCITY, ule,

0.5

0.4

-

o
~o

e
]

'BACK-CALCULATED

- =0.2%

" VELOCITY
o * BACK-CALCULATED
] PRESSURE . -
0.6r |
. R=215R,
_ 2 | '
0o gpeRTy,
P )
= y=1.4
% 0.41
o)
< 0.3} |
('
L o
% V4
0.2 o
j] . .
- /
o. )
R e
0.1
S | /u/
o
844“ ~ | A
. TR — —>0 b
1.0 1.4~ 1.8 2.2 2.6 . [3.4
NON-DIMENS [ONAL TIME AFTER START OF ° o
01k HEAT ADDITION, t/R8, \. Wﬁ
- | T
- ' (]

Fxgure 6 Compartson of“Exac*t”FIow Varzab!es wnth Ca!cuia't ons,
' Sample Star’ung Condi’nons of Fig. 2 and Fig. 3.



TIME, t

-INITIAL DATA LINE

A PRESSURE

«««

"RECORD |

fi
)

DISTANCE, R -

" Figure. 7. Expanding Cloud Model



| R(;‘A.AAR i

oPp,
! [ S |
p|'..uzo- _Opl'ul

© CONSERVATION OF MASS: b+ 2LPu) 28U g

_ NV .
p|+p1ul pauu.zg)aui‘

P -0

2 "

At Rg-l2AR  Rg

- FINITE-DIFFERENCE FORM:

Figure 8. Method for Correcting Input Data



- je— AR —=

N Figuké~9. Methddfor Including Sho’ck:Wavesi, o



 NEW DATA . INITIAL DATA
~ LINE -  LINE

25

| P CHARACTERISTIC D

"Q" CHARACTERISTIC

" Figure A.1 Calculation of New Data Point



